# Succeed in Understanding Acoustic physics Physical Science

Before beginning the presentation without addressing the why, here is how to perceive in order to create melodies.
Imagine, there are more than 2000 years three perceptions of the world which clash.
One is looking for an absolute God in all things, this perception induced frequencies
The second perception is always looking for Gods, but through the geometry.
The worship sentence is under the rule of surveyor which means according to God, ancient greece declared the earth flat,
because the rule of geometry on the horizon, showed it.
The third perception we use here, comes from the man under the oak, which showed
if moving in a direction of a branch was using a balance of several laws,
return was done with the help of other phenomena meet the balance of several other laws.

## Demonstration with auditory and visual example

the total length of the wave equal 100 in all cases included in the course (unit of time is s /44100).
byte 6 and byte 7 represent the complete wave and have in all examples, of what is called frequency, the same value.

### The wave is a duration of 100 with one changeover time between the rising edge and the falling edge , period = 1/441 s, byte 8 = 0

byte 3 sound pressure level constant value, byte 4 sound pressure level variable value, byte 5 variation sound pressure level variable value, byte 15 force, byte 16 repeat
74 1 60 167 1 25 75 0 0 0 0 0 0 0 20 20

### wave length of 100 with exchange time between the rising edge and the falling edge, period = 1/441 s, byte 8 = 1

byte 3 et byte 4 sound pressure levels constant value, byte 14 value exchange, byte 5 exchange amount of time between the two fronts variable value, byte 15 force, byte 16 repeat

74 1 60 167 1 25 75 1 0 0 0 0 0 7 1 20

74 1 60 167 1 50 50 1 0 0 0 0 0 7 1 20

74 1 60 167 1 94 6 1 0 0 0 0 0 7 1 20

### The change is constant to an increase sound pressure level, period = 1/441 s, byte 8 = 2

byte 3 sound pressure level constant value, byte 4 constant value, byte 15 force, byte 16 repeat

74 1 117 127 1 7 93 2 0 0 0 0 0 0 20 40

### La variation est constante sans variation d'sound pressure level, period = 1/441 s, byte 8 = 3

byte 3 sound pressure level constant value, byte 4 sound pressure level variable value, byte 5 variation sound pressure level variable value, byte 15 force, byte 16 repeat

74 1 117 127 1 50 50 3 0 0 0 0 0 0 20 40

### The change is constant to decrease sound pressure level, period = 1/441 s, byte 8 = 4

byte 3 sound pressure level constant value, byte 4 sound pressure level variable value, byte 5 variation sound pressure level variable value, byte 15 force, byte 16 repeat

74 1 10 220 10 50 50 4 0 0 0 0 0 0 40 20

### Case with variations coupled with increased sound pressure level, period = 1/441 s, byte 8 = 5

byte 3 sound pressure level constant value, byte 4 sound pressure level variable value, byte 5 variation des sound pressure levels variable values, byte 15 force, byte 16 repeat
byte 9 sound pressure level variable value

74 1 117 127 1 7 93 5 137 0 0 0 0 0 20 40

### Case with variations coupled with decreased sound pressure level, period = 1/441 s, byte 8 = 6

byte 3 sound pressure level constant value, byte 4 sound pressure level variable value, byte 5 variation des sound pressure levels variable values, byte 15 force, byte 16 repeat
byte 9 sound pressure level variable value

74 1 200 20 1 17 83 6 100 0 0 0 0 0 5 80

### changes coupled with no change sound pressure level, period = 1/441 s, byte 8 = 7

byte 3 sound pressure level constant value, byte 4 sound pressure level variable value, byte 5 variation des sound pressure levels variable values, byte 15 force, byte 16 repeat
byte 9 sound pressure level variable value

74 1 200 20 1 17 83 7 100 0 0 0 0 0 5 80

diminishing sound pressure level of the second front the sound becomes more acute

74 1 200 20 1 17 83 7 30 0 0 0 0 0 5 80

### variations coupled variation sound pressure level reverse, period = 1/441 s, byte 8 = 8

byte 3 sound pressure level constant value, byte 4 sound pressure level variable value, byte 5 variation des sound pressure levels variable values, byte 15 force, byte 16 repeat
byte 9 sound pressure level variable value, byte 10 sound pressure level constant value

74 1 200 20 1 17 83 8 100 0 0 0 0 0 5 80

### variations coupled variation sound pressure level increasing, period = 1/441 s, byte 8 = 9

byte 3 sound pressure level constant value, byte 4 sound pressure level variable value, byte 5 variation des sound pressure levels variable values, byte 15 force, byte 16 repeat
byte 9 sound pressure level variable value, byte 10 sound pressure level constant value

74 1 200 20 1 17 83 9 100 80 0 0 0 0 5 80

### variations coupled variation sound pressure level increasing, period = 1/441 s, byte 8 = 10

byte 3 sound pressure level constant value, byte 4 sound pressure level variable value, byte 5 variation sound pressure level variable value, byte 15 force, byte 16 repeat
byte 9 sound pressure level variable value, byte 10 sound pressure level constant value, byte 11 variation deuxième sound pressure level variable value

74 1 200 20 1 17 83 10 100 80 3 0 0 0 20 20

### variations coupled variation sound pressure level inverse, period = 1/441 s, byte 8 = 11

byte 3 sound pressure level constant value, byte 4 sound pressure level variable value, byte 5 variation sound pressure level variable value, byte 15 force, byte 16 repeat
byte 9 sound pressure level variable value, byte 10 sound pressure level constant value, byte 11 variation deuxième sound pressure level variable value

74 1 20 30 3 50 50 11 140 3 0 0 0 0 10 40

### variations coupled no change of sound pressure level, period = 1/441 s, byte 8 = 12

byte 3 sound pressure level constant value, byte 4 and 9 sound pressure levels , byte 15 force, byte 16 repeat
byte 13 force the second wave, byte 10 sound pressure level constant value, byte 12 force the first wave

74 1 180 120 1 20 80 12 120 126 3 1 4 0 5 7

### variations coupled no change of sound pressure level, period = 1/441 s, byte 8 = 13

byte 3 sound pressure level constant value, byte 4 and 9 sound pressure level variable value , byte 5 and 11 variation sound pressure level , byte 15 force, byte 16 repeat
byte 13 force de la deuxième onde, byte 10 sound pressure level constant value, byte 12 force de la première onde

74 1 180 120 1 20 80 13 120 126 3 1 4 0 5 7

We note here that the increase in delta sound pressure level modifit sound to treble

74 1 80 82 7 20 80 13 124 120 0 1 7 17 5 7

74 1 200 22 4 22 78 13 124 120 0 1 7 17 5 7

### modulation sound pressure level asynchronous, period = 1/441 s, byte 8 = 14

bytes 4 and 9 sound pressure levels variables, bytes 3 and 10 sound pressure levels constant value, bytes 5 and 11 variations sound pressure levels, bytes 12 and 13 forces, byte 14 modulation, byte 16 repeat

74 1 200 22 4 94 6 14 140 120 0 1 5 5 5 1

74 1 200 22 4 6 94 14 140 120 0 1 5 5 5 1

### modulation sound pressure level synchrone, period = 1/441 s, byte 8 = 15

byte 16 nombre de repeat, bytes 12 and 13 forces, bytes 4 and 9 sound pressure levels variables, bytes 5 and 11 variations des sound pressure levels, bytes 3 and 10 sound pressure levels constant value, byte 14 modulo

74 1 200 22 1 60 40 15 140 142 1 1 3 7 4 3

74 1 200 22 3 60 40 15 32 190 3 1 3 7 4 3

74 1 200 22 9 60 40 15 32 190 9 1 3 7 4 3

74 1 200 30 19 94 6 15 30 190 19 4 4 7 4 3

74 1 130 30 19 50 50 15 127 220 19 1 1 1 11 5

### Early acoustic hammers, period = 1/441 s, byte 8 = 16

The principle of the hammer understood in the sense of the term Celtic, is one that begins in a major way and then decreases, sound begins with a great sound pressure level between sound pressure level high and sound pressure level low by keeping the rule imposed in this course to always have the same frequency.

bytes 3 and 5 sound pressure levels hautes, bytes 4 and 6 sound pressure levels basses, bytes 7 and 16 durée de la première onde doit être égale à 100, bytes 9 and 10 durée deuxième onde doit être égale à 100, bytes 11 variation sound pressure level onde 1, bytes 12 variation sound pressure level onde 2, bytes 13 and 14 forces, byte 15 nombre de variations

74 1 200 22 180 42 48 16 54 46 3 2 1 2 30 52

74 1 200 22 180 42 24 16 80 20 4 3 1 2 30 76

74 1 200 22 180 42 24 16 80 20 7 4 1 2 25 76

That there has interesting in the case above, it is the difference of its product between the two phases. We note that apparently we have the same state of balance, but this is no longer the same law dominates, so this is not the same sound heard. In other words we have here the passage of a door between two strong laws, and therefore two distinct sounds. In the example application the same variation of sound pressure level is increased or decreased according to will not have the same dominant physical law, so give two different sounds

### Early acoustic unicorns, period = 1/441 s, byte 8 = 17

The principle of the Unicorn Celtic understood in the sense of the term, is a memory no matter lends itself to accommodate the representation is rainwater (then before our polution) after purifiction due to evaporation. In acoustics it is an effect that starts one way and then increases very light, here the sound begins with a small sound pressure level sound pressure between the high and low sound pressure level level keeping the imposed rule in this during always have the same frequency. The peculiarity of the unicorn is to wear a previous sound without the mixer. I named this effect the acoustic surf

bytes 3 and 5 sound pressure levels hautes, bytes 4 and 6 sound pressure levels basses, bytes 7 and 16 the first wave length must be equal to 100, bytes 9 and 10 second wave length must be equal to 100, bytes 11 variation sound pressure level onde 1, bytes 12 variation sound pressure level wave 2, bytes 13 and 14 forces, byte 15 nombre de variations
Le cas 17 est identique au cas 16 mais la forme est multipliée par 2, simply reverse the starting positions of the hammer for the unicorn, variation sound pressure level constant
74 1 120 130 115 125 24 17 80 20 7 4 1 2 10 76

74 1 120 120 115 125 24 17 80 1 1 2 5 4 40 76

### acoustic unicorns delayed, consisting of 2 waves, 100 each time, period = 1/441 s, byte 8 = 18

bytes 3 and 5 sound pressure levels high, bytes 4 and 6 sound pressure levels low, bytes 7 and 16 duration of the first wave must be equal to 100, bytes 9 and 10 duration of the second wavemust be equal to 100, bytes 11 variation sound pressure level wave 1, bytes 12 variation sound pressure level wave 2, bytes 13 and 14 forces, byte 15 nombre de repeats
variation sound pressure level reflect, the reaction influences the action with the delay of inertia, form with 1 dominant factor
74 1 125 130 140 130 56 18 42 58 1 2 2 3 2 44

Increasing by the same amount the strength of both waves span 100, we get a deeper sound and this without change frequency.
74 1 125 130 140 130 56 18 42 58 1 2 5 6 2 44

Increasing with great strength difference of the two waves span 100, we spend many doors, one of which opens with an acoustic hammer, between the two waves which are much the same frequency.
74 1 125 130 140 130 56 18 42 58 1 2 15 6 2 44

### acoustic unicorns delayed, compound 2 waves, 100 each time, period = 1/441 s, byte 8 = 19

bytes 3 and 5 sound pressure levels hautes, bytes 4 and 6 sound pressure levels basses, bytes 7 and 16 durée de la première wave doit être égale à 100, bytes 9 and 10 durée deuxième wave doit être égale à 100, bytes 11 variation sound pressure level wave 1, bytes 12 variation sound pressure level wave 2, bytes 13 and 14 forces, byte 15 nombre de repeats
C'est un cas à variation d'sound pressure level réfléchit, la réaction influence l'action avec le retard de l'inertie, une forme à un facteur dominant
74 1 125 130 140 130 70 19 70 30 1 2 2 3 1 30

### acoustic unicorns delayed, compound 4 waves, 100 each time, period = 1/441 s, byte 8 = 20

bytes 3 ,4 5, 6 écart sound pressure level par rapport pression ambiante, bytes 7 and 16 durée de la première wave doit être égale à 100, bytes 9 and 10 durée deuxième wave doit être égale à 100, bytes 11 variation sound pressure level wave 1, bytes 12 variation sound pressure level wave 2, bytes 13 and 14 forces, byte 15 durée repère dans le cours cette valeur = 100 and les autres durées ne doivent pas la dépasser
C'est un cas à variation d'sound pressure level réfléchit, la réaction influence l'action avec le retard de l'inertie, une forme à un facteur dominant
74 1 2 3 2 3 90 20 91 89 1 1 17 17 100 87

### Cas modulo variation sound pressure level asynchrone rip de durée entre les deux front de l'onde byte 8 = 21

bytes 4 and 9 sound pressure levels variables, bytes 3 and 10 sound pressure levels constant value, bytes 5 and 11 variations sound pressure levels, bytes 12 and 13 forces, byte 14 modulo, byte 16 rip de durée entre le front montant and descendant

74 1 200 22 4 55 45 21 180 60 2 3 4 4 4 1

74 1 200 22 4 94 6 21 140 120 0 1 5 5 5 1